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'Suppose that A 18 a square matrix consisting of nonnegative elanents.
In certain consideratione it is important to know when all the elenents of
some power of A are strictly positives. Frobenius [2}2/ gave a very simple
necessary and sufficient confition for this to ha;pen. In this /nc;to we
give 'a simple proof of this result. /Owr, ;’),roc')f is algebraic in nature and
avoids the use of the convergence of powers of a matrix. .

All matrices considered here will have real elements. For two such

mitrices (not necessarily square) B = (bU)’ C = (Cij) we define

> >
Be=C 18 bij -ciJ for each i, j.
B2C if B>=Cbut B4C
B>C if bi,j’ ciJ for each 1, jJ.

A square matrix A £ 0 (A is then called nonnegative) is said to be

indecomposable i1f for no permutation matrix P d-~es

AL, M2

PAP - where the A
0 A22

hA are square submatrices.
The fundamental result about nonnegative, indecomposable matrices 1is

due to Frobenius [2]; this, and other, resulta have recently been rederived

and extended in a greatly simplified manner by Wielandt [ 2] and Debreu and

Herstein [1]. It is

THEO{EM. Let A 20 be an indecumposable matrix. Then A has a positive

characteriat_i_g root r such that

1, r is a simple root.
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2. to r can be associated a characteristic vectar x > 0.

— — — —

3. if « 18 any other characteristic root of 4, lo< | - r.

If 5::__“(; thien 2. can be sharpened to | « | ¢ r for all characteristic
roots « f r of A.

IrAdO s indecomposable and if A has no characteristic root other
than r of max...l absolute value then A is said to be primitive.

In this paper we prove the

THEOREM® (™robenius). Let A 2 0. Then A" > 0 for some integer m > ) if
;a_r_lg_ only 1_1: A ls primitive,

Suppose that A" > 9. Then A must be indecom;osable; for if

N B C N : Sl .
PAP L then "A"P " = & contradicting A~ > O,
0 D o D"

Now suppose that r and rcpP ¥ r are cnaractceristic roots of A of maximal

-+ 0
absolute value. Then Am, A" 1 aro bo.h positive and havs rm, rm"im\r ,

and rm’l, x'.“lei(m.l)'+ respectively as roots uof maxima)® absolute value

Since the largest root of a positive matrix is simple and is actually

greater than any other root in abselute valus. We must have

meim\p L) rmOlai(m*l)k# . LD iy

o r , whence e = 1, a contraiiction.

r
There remains but to show that i{f A is prinitive than A" > 0 for a
suitable integer - > 0. This will be prove! as a consejuace of the

following few lemmas, which by themselve: are of some interest,

Lemma 1. ;.{ A is lr_i_m_i_ti_w then Am _ig primitive for every ao;s}}_iv_g i_nt.eger

m.

Proof. Since r is a simple root of A an is t'e on.y root of A »f absolute
n m m

value r, r is a sim.lo root of A an: is the oniy root of A of absolute

. o . ,
vaiue r'. 5. we need but snow that A~ is indecompossble for uvary integer
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m » O. Suppose that for some 8 A® s not indeoumposable; we can then as-

-\
sume that A® = fB CJ . Now Ax = rx for x » C, so A%x - r'x; partition
D
~

0
o N ! e | M

x aoccording to the partitioning of A° and we have = I

0O D x2 12

s
That is I)x2 r 12, and since X,

{
of D. Since the transpose, A , of A {3 also indecomposable, we have

is positive, r® is a characterietic root

8 is a charac-

!
AY =rY for Y > 0. Partitioning as above we obta.n that r
!
teristic root of B , and so of B. Being a characteristic root of both B
and D r® mst ve a mltiple root of A", which is a contradiction. The

lemma is tl.ereby proved,

Lemma 2. (Wwielandt). Let ¢ be any positive number. Suppose A £ o is an

n-1

o indecomposable matrix. Then ( € I+*a) > O where I is tbe identity

matrix.
Prcof. It clearly suffices to show that for any vector x, x 2 0,
(€ I*A)n.1 x > 0. Let

N
xu-(eI*A) lx. Then xd‘l-rxv¢l&x¥,.

Hence a zero component can occur in X )4 only where a zero component al-
ready occured in X, Howevar, not evary such 2ero component can be pre-

served in x 1° For if so, by a suitable reordering of the cocrdinatss,

)+
(p ‘11 ‘12 p q-

x/ 'LO » P > 0, whence XJ’1-€ ). A

22 0 0)

~

0 21

from which it follows that A * O, This together with p > 0 forcees

g1 P
A2l = 0, vivlating the indecomnosabiiity of A. So ~ach application of
€1+ A to x decreases the number of zaero coordinates by at least one.
Hence ( € I‘A)n-lx » 0.

As an sasy condequence of Lemma 2 we obtaln
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Lemma 3. If A = (a J) is indacomposable and a,, > O for each 1 then

i1

A"t oo,

For let ¢ be chosen satisfying O < € ¢ nmin a,- Then A = €1 + B
i
wnere B = 0 is indecomposable. Lemma 2 then yields ‘n—l > 0.
Lot A" = (a (.) . Then we have

Lemma L. Let A 20 be indecomposable. Then for a7y 1,) we can find an

m=- i(4,))> O so that lij)

Proof. Consider first the case i ¥ j. Since

(1+a)"" 2 B (L [ ] N B X by Lemma 2, l(i?)> 0 for some

m . n-1. Now suppose i = j. Since A is indeccmposable, no column of zeros

can occur in A. So there is a x with aLki > 0. If k =1 then ‘gi)

all m trivially. If, on the other hand, k £ i, wen ;gi)

(m+l) _ - (m) 2 (m)
and since 84y P

» N for
> O for evome m,

a a ., » 0 the lenma is proved.

kil

e I o

We are now in position to cumplete the proof of Theorem . Let A be

(m,)
R R " - (aiJ(l)-

primitive. Pick my so that in A 7, a, 0. Let "1 - A

n
By Lemma 1 A'l is primitive, "o there is an m, such that in Al2,
(m,) (m)  (nF m,
a5 (1) > 0. Since au(l) “ay 0, 8, (1) » 0. Let A2 - A.l . Con-
mlm2...mx
tinuing in this way we arri.e at an A=A ' which 1s primitive and

whose diagonal elements ure all positive. By Lemra 3 A;’ > G for some t,

hence A" > ° for some suitably chosen inteye  m.

Cowleg Commission for Reseaxrch in Economics

and The University of Chicage
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FOOTNOTES

1. This paper 1s a result of the work being done at the Cowles Commission
for Research in Economics on the "Theory of Resource Allocation" under sub-

contract to the RAND Cornoration.

2. Numbers in square brackets refer to the bibliography at the end of
this paper.
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